Topics Types of Bank Fraud 12 Most Common Types of Bank Fraud Account Takeover (ATO) Fraud Advance Fee Fraud Check Fraud ACH Fraud Real-time Payment Fraud First-Party Fraud Wire Fraud Zelle Fraud Types of Card Fraud Credit Card Fraud Debit Card Fraud Lost or Stolen Card Fraud Card Skimming Card Cloning Chargeback Fraud Card Not Present (CNP) Fraud Anti-Money Laundering (AML) Anti-Money Laundering (AML) Money Laundering Money Mule Scams Suspicious Activity Reports (SARs) Fraud Defenses Behavioral Biometrics Crowdsourced Abuse Reporting Device Fingerprinting Real-time monitoring Email Reputation Service IP Reputation Service SR 11-7 Compliance Supervised Machine Learning Tokenization Transaction Monitoring Two-Factor Authentication (2FA) Unsupervised Machine Learning Fraud Tactics Bot Attacks Call Center Scams Credential Stuffing Data Breaches Deepfakes Device Emulators GPS Spoofing P2P VPN Networks Phishing Attacks SIM Swap Fraud URL Shortener Spam Web Scraping Fraud Tech Anomaly Detection Device Intelligence Feature Engineering Generative AI Identity (ID) Graphing Network Analysis Natural Language Processing Fraud Types Application Fraud Transaction Fraud Payment Fraud Pump and Dump Scams Bust-Out Fraud Buyer-Seller Collusion Content Abuse Cryptocurrency Investment Scams Fake Cryptocurrency Exchanges Fake Cryptocurrency Wallets Loan Stacking Romance Scams Rug Pull Scams SIM Swapping Synthetic Identity Theft Cryptocurrency Scams Pig Butchering Scams Feature Engineering Feature engineering is the process of using domain knowledge to extract features from raw data via data mining techniques. High-quality features are important for fraud detection, because a machine learning model is only as good as the data and features it is fed. Today, data scientists spend 70% of their time on data cleaning and feature engineering. DataVisor makes the feature engineering process a lot easier by offering an advanced and automated Feature Platform. Why Is DataVisor’s Feature Platform Unique? Out-of-the-Box Feature Packages for Fraud Use Cases DataVisor’s Feature Platform provides pre-built feature packages that are optimized for specific fraud types, including application fraud, ATO, transaction fraud and other scenarios. Extensive out-of-the-box features based on DataVisor’s domain expertise reduce time spent manually building features from scratch. Deep Learning Features and the Global Intelligence Network Deep learning helps detect script-generated content, disposable email services, anonymous proxies, suspicious IP usage and more. Gather intelligence from DataVisor’s consortium database to provide unique signals such as entity ages, geo-usage profiling and blacklists. Backtesting on Historical Data and Rapid Deployment Easily backtest on extensive historical data to validate detection performance, with full flexibility to choose the data’s timestamp and sample set. Results are returned within seconds; all the features are production-ready and can be deployed in minutes. High Scalability and Big Data Architecture Handle years of data for large institutions and process massive amounts of data in real time — 10,000+ QPS with only 10-50 ms latency. To minimize computation costs, DataVisor builds features on top of features, so that each feature is computed only once. Download the Product Sheet